of     1   

#211474367Tuesday, March 07, 2017 11:03 PM GMT

ok explain to me like i'm 5 how do black holes work i'm so curious Live Laugh Logaids
#211474793Tuesday, March 07, 2017 11:10 PM GMT

lol im learning about blackholes in science now
#211474864Tuesday, March 07, 2017 11:11 PM GMT

he asked how they work not what you're learning dingus berry
Top 100 Poster
#211474982Tuesday, March 07, 2017 11:13 PM GMT

they are just normal holes, but colored black cuz its an african american hole.
#211475046Tuesday, March 07, 2017 11:14 PM GMT

i just watched a video on it but i'm still really confused because they use big sciency words that only they understand so no one else outside their stupid club can read it Live Laugh Logaids
#211475102Tuesday, March 07, 2017 11:15 PM GMT

it sucks things in 629 191 28
#211475122Tuesday, March 07, 2017 11:15 PM GMT

step one: SMONK GSC step two: be in a black hole step three: ? step four: profit
#211475213Tuesday, March 07, 2017 11:16 PM GMT

dude u would need to crush the earth into the size of a peanut to make a black hole. no lie, all that density into a PEANUT Live Laugh Logaids
#211475599Tuesday, March 07, 2017 11:22 PM GMT

Matter collapses in on itself and stuff gets sucked in
#211476370Tuesday, March 07, 2017 11:32 PM GMT

A black hole is a region of spacetime exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it.[1] The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.[2][3] The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light.[4][5] Moreover, quantum field theory in curved spacetime predicts that event horizons #### ####### radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe. Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by #### ####### and ############ ######## The first modern solution of general relativity that would characterize a black hole was found by Karl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by David Finkelstein in 1958. Black holes were long considered a mathematical curiosity; it was during the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality. Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M☉) may form. There is general consensus that supermassive black holes exist in the centers of most galaxies. Despite its invisible interior, the presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter that falls onto a black hole can form an external accretion disk heated by friction, forming some of the brightest objects in the universe. If there are other stars orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems, and established that the radio source known as Sagittarius A*, at the core of our own Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.
#211476570Tuesday, March 07, 2017 11:34 PM GMT

does it get any more jewish than "finkelstein" Live Laugh Logaids
#211476839Tuesday, March 07, 2017 11:37 PM GMT

go on the subreddit
#211477391Tuesday, March 07, 2017 11:44 PM GMT

black holes happen when a big star goes super nova things orbit around it until they pass the event horizon, then they get sucked in and nothing can escape, not even light center of galaxies thats it ok
#211478249Tuesday, March 07, 2017 11:53 PM GMT

You use it to create a black or multiracial baby
#223574257Saturday, August 12, 2017 11:59 PM GMT

#223668000Monday, August 14, 2017 8:11 PM GMT

[REDACTED] This is my siggy. There are many like it, but this one is mine.
#223737967Wednesday, August 16, 2017 2:50 AM GMT


    of     1