use the structure function D_{n}(R)=C_{n}^{2}R^{{2/3}}\, and the integral formula \int _{0}^{\infty }x^{\alpha }\sin(x)\,dx=2^{\alpha }{\sqrt {\pi }}\,{\frac {\Gamma ({\frac {\alpha }{2}}+1)}{\Gamma ({\frac {1}{2}}-{\frac {\alpha }{2}})}}\, to obtain the Kolmogorov power law spectrum:
phi _{n}(\kappa )=0.033C_{n}^{2}\kappa ^{{-11/3}},\,\,\,{\frac {1}{L_{0}}}<\!\!<\kappa <\!\!<{\frac {1}{l_{0}}} |