of     1   

LazyObamaXVII
#143116446Saturday, August 09, 2014 8:35 PM GMT

title
shocktrooper808
#143116516Saturday, August 09, 2014 8:35 PM GMT

/support You're my president You're not in Kansas anymore
Litemare
#143116534Saturday, August 09, 2014 8:35 PM GMT

Praise be to natural selection
ClassicLynx
#143116754Saturday, August 09, 2014 8:38 PM GMT

i have my reasonz to why stupidy should be petitionz here they are- "chaos" means "a state of disorder".[9] However, in chaos theory, the term is defined more precisely. Although there is no universally accepted mathematical definition of chaos, a commonly used definition says that, for a dynamical system to be classified as chaotic, it must have the following properties:[10] it must be sensitive to initial conditions; it must be topologically mixing; and it must have dense periodic orbits. Sensitivity to initial conditions[edit] Sensitivity to initial conditions means that each point in a chaotic system is arbitrarily closely approximated by other points with significantly different future paths, or trajectories. Thus, an arbitrarily small change, or perturbation, of the current trajectory may lead to significantly different future behavior. It has been shown that in some cases the last two properties in the above actually imply sensitivity to initial conditions,[11][12] and if attention is restricted to intervals, the second property implies the other two[13] (an alternative, and in general weaker, definition of chaos uses only the first two properties in the above list).[14] It is interesting that the most practically significant property, that of sensitivity to initial conditions, is redundant in the definition, being implied by two (or for intervals, one) purely topological properties, which are therefore of greater interest to mathematicians. Sensitivity to initial conditions is popularly known as the "butterfly effect", so called because of the title of a paper given by Edward Lorenz in 1972 to the American Association for the Advancement of Science in Washington, D.C., entitled Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas?.[15] The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale phenomena. Had the butterfly not flapped its wings, the trajectory of the system might have been vastly different. A consequence of sensitivity to initial conditions is that if we start with only a finite amount of information about the system (as is usually the case in practice), then beyond a certain time the system will no longer be predictable. This is most familiar in the case of weather, which is generally predictable only about a week ahead.[16] Of course this does not mean that we cannot say anything about events far in the future; there are some restrictions on the system. With weather, we know that the temperature will never reach 100 degrees Celsius or fall to -130 degrees Celsius on earth, but we are not able to say exactly what day we will have the hottest temperature of the year. In more mathematical terms, the Lyapunov exponent measures the sensitivity to initial conditions. Given two starting trajectories in the phase space that are infinitesimally close, with initial separation \delta \mathbf{Z}_0 end up diverging at a rate given by | \delta\mathbf{Z}(t) | \approx e^{\lambda t} | \delta \mathbf{Z}_0 |\ where t is the time and λ is the Lyapunov exponent. The rate of separation depends on the orientation of the initial separation vector, so there is a whole spectrum of Lyapunov exponents. The number of Lyapunov exponents is equal to the number of dimensions of the phase space, though it is common to just refer to the largest one. For example, the maximal Lyapunov exponent (MLE) is most often used because it determines the overall predictability of the system. A positive MLE is usually taken as an indication that the system is chaotic. There are also other properties that relate to sensitivity of initial conditions, such as measure-theoretical mixing (as discussed in ergodic theory) and properties of a K-system.[4] Topological mixing[edit] The map defined by x → 4 x (1 – x) and y → x + y if x + y < 1 (x + y – 1 otherwise) also displays topological mixing. Here the blue region is transformed by the dynamics first to the purple region, then to the pink and red regions, and eventually to a cloud of points scattered across the space. Topological mixing (or topological transitivity) means that the system will evolve over time so that any given region or open set of its phase space will eventually overlap with any other given region. This mathematical concept of "mixing" corresponds to the standard intuition, and the mixing of colored dyes or fluids is an example of a chaotic system. Topological mixing is often omitted from popular accounts of chaos, which equate chaos with only sensitivity to initial conditions. However, sensitive dependence on initial conditions alone does not give chaos. For example, consider the simple dynamical system produced by repeatedly doubling an initial value. This system has sensitive dependence on initial conditions everywhere, since any pair of nearby points will eventually become widely separated. However, this example has no topological mixing, and therefore has no chaos. Indeed, it has extremely simple behavior: all points except 0 will tend to positive or negative infinity. Density of periodic orbits[edit] For a chaotic system to have a dense periodic orbit means that every point in the space is approached arbitrarily closely by periodic orbits.[17] The one-dimensional logistic map defined by x → 4 x (1 – x) is one of the simplest systems with density of periodic orbits. For example, \tfrac{5-\sqrt{5}}{8} → \tfrac{5+\sqrt{5}}{8} → \tfrac{5-\sqrt{5}}{8} (or approximately 0.3454915 → 0.9045085 → 0.3454915) is an (unstable) orbit of period 2, and similar orbits exist for periods 4, 8, 16, etc. (indeed, for all the periods specified by Sharkovskii's theorem).[18] Sharkovskii's theorem is the basis of the Li and Yorke[19] (1975) proof that any one-dimensional system that exhibits a regular cycle of period three will also display regular cycles of every other length as well as completely chaotic orbits. Strange attractors[edit] The Lorenz attractor displays chaotic behavior. These two plots demonstrate sensitive dependence on initial conditions within the region of phase space occupied by the attractor. Some dynamical systems, like the one-dimensional logistic map defined by x → 4 x (1 – x), are chaotic everywhere, but in many cases chaotic behavior is found only in a subset of phase space. The cases of most interest arise when the chaotic behavior takes place on an attractor, since then a large set of initial conditions will lead to orbits that converge to this chaotic region. An easy way to visualize a chaotic attractor is to start with a point in the basin of attraction of the attractor, and then simply plot its subsequent orbit. Because of the topological transitivity condition, this is likely to produce a picture of the entire final attractor, and indeed both orbits shown in the figure on the right give a picture of the general shape of the Lorenz attractor. This attractor results from a simple three-dimensional model of the Lorenz weather system. The Lorenz attractor is perhaps one of the best-known chaotic system diagrams, probably because it was not only one of the first, but it is also one of the most complex and as such gives rise to a very interesting pattern, that with a little imagination, looks like the wings of a butterfly. Unlike fixed-point attractors and limit cycles, the attractors that arise from chaotic systems, known as strange attractors, have great detail and complexity. Strange attractors occur in both continuous dynamical systems (such as the Lorenz system) and in some discrete systems (such as the Hénon map). Other discrete dynamical systems have a repelling structure called a Julia set which forms at the boundary between basins of attraction of fixed points – Julia sets can be thought of as strange repellers. Both strange attractors and Julia sets typically have a fractal structure, and the fractal dimension can be calculated for them. Minimum complexity of a chaotic system[edit] Bifurcation diagram of the logistic map x → r x (1 – x). Each vertical slice shows the attractor for a specific value of r. The diagram displays period-doubling as r increases, eventually producing chaos. Discrete chaotic systems, such as the logistic map, can exhibit strange attractors whatever their dimensionality. In contrast, for continuous dynamical systems, the Poincaré–Bendixson theorem shows that a strange attractor can only arise in three or more dimensions. Finite-dimensional linear systems are never chaotic; for a dynamical system to display chaotic behavior, it has to be either nonlinear or infinite-dimensional. The Poincaré–Bendixson theorem states that a two-dimensional differential equation has very regular behavior. The Lorenz attractor discussed above is generated by a system of three differential equations such as:
KumiUchiKitty
#143116816Saturday, August 09, 2014 8:38 PM GMT

this is what i read: "petition to abolish off topic"

    of     1